Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Crit Care ; 28(1): 65, 2024 02 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424569

RESUMEN

SARS-CoV-2 can induce insulin resistance, which is, among others, mediated by adipose tissue dysfunction and reduced angiotensin-converting enzyme 2 (ACE2) enzymatic activity. In SARS-CoV-2-infected mice, the tyrosine kinase inhibitor imatinib attenuates inflammation and improves insulin sensitivity. Here, we report the effects of imatinib on incident hyperglycaemia, circulating levels of glucoregulatory proteins, longitudinal insulin sensitivity and ACE-2 enzymatic activity in 385 hospitalized COVID-19 patients who participated in a randomized, double-blind, placebo-controlled clinical trial. Patients with severe hyperglycaemia had similar demographics compared to those without, but required longer hospital stays and exhibited higher invasive ventilation and mortality rates. The incidence of severe hyperglycaemia was significantly lower in patients treated with imatinib, while insulin production and central insulin sensitivity were unaffected. Imatinib increased plasma angiotensin-2 and adiponectin levels, and decreased c-Jun N-terminal protein kinase 1 (JNK1), JNK2 and interleukin-6 levels. These findings suggest that imatinib restores endocrine control of peripheral glucose uptake in COVID-19.


Asunto(s)
COVID-19 , Hiperglucemia , Resistencia a la Insulina , Humanos , Hiperglucemia/tratamiento farmacológico , Mesilato de Imatinib/farmacología , Mesilato de Imatinib/uso terapéutico , SARS-CoV-2
2.
Pulm Circ ; 12(4): e12146, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36568694

RESUMEN

Chronic thromboembolic pulmonary hypertension (CTEPH) is characterized by elevated pulmonary arterial pressure and organized thrombi within pulmonary arteries. Riociguat is a soluble guanylate cyclase stimulator and is approved for patients with inoperable CTEPH or residual pulmonary hypertension after pulmonary endarterectomy (PEA). Previous work suggested that riociguat treatment is associated with an increased risk of bleeding, although the mechanism is unclear. The aim of this study is to assess how riociguat affects primary hemostasis by studying its effect on the interaction between platelets and endothelial cells derived from CTEPH patients. Pulmonary artery endothelial cells (PAECs) were isolated from thrombus-free regions of PEA material. Purified PAECs were cultured in flow chambers and were stimulated with 0.1 and 1 µM riociguat for 24 h before flow experiments. After stimulation with histamine, PAECs were exposed to platelets under shear stress. Platelet adhesion and expression of von Willebrand Factor (VWF) were evaluated to assess the role of riociguat in hemostasis. Under dynamic conditions, 0.1 and 1.0 µM of riociguat suppressed platelet adhesion on the surface of PAECs. Although riociguat did not affect intracellular expression and secretion of VWF, PAECs stimulated with riociguat produced fewer VWF strings than unstimulated PAECs. Flow cytometry suggested that decreased VWF string formation upon riociguat treatment may be associated with suppressed cell surface expression of P-selectin, a protein that stabilizes VWF anchoring on the endothelial surface. In conclusion, Riociguat inhibits VWF string elongation and platelet adhesion on the surface of CTEPH-PAECs, possibly by reduced P-selectin cell surface expression.

3.
Am J Respir Crit Care Med ; 205(7): 806-818, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35081007

RESUMEN

Rationale: von Willebrand factor (vWF) mediates platelet adhesion during thrombosis. While chronic thromboembolic pulmonary hypertension (CTEPH) is associated with increased plasma levels of vWF, the role of this protein in CTEPH has remained enigmatic. Objectives: To identify the role of vWF in CTEPH. Methods: CTEPH-specific patient plasma and pulmonary endarterectomy material from patients with CTEPH were used to study the relationship between inflammation, vWF expression, and pulmonary thrombosis. Cell culture findings were validated in human tissue, and proteomics and chromatin immunoprecipitation were used to investigate the underlying mechanism of CTEPH. Measurements and Main Results: vWF is increased in plasma and the pulmonary endothelium of CTEPH patients. In vitro, the increase in vWF gene expression and the higher release of vWF protein upon endothelial activation resulted in elevated platelet adhesion to CTEPH endothelium. Proteomic analysis revealed that nuclear factor (NF)-κB2 was significantly increased in CTEPH. We demonstrate reduced histone tri-methylation and increased histone acetylation of the vWF promoter in CTEPH endothelium, facilitating binding of NF-κB2 to the vWF promoter and driving vWF transcription. Genetic interference of NFκB2 normalized the high vWF RNA expression levels and reversed the prothrombotic phenotype observed in CTEPH-pulmonary artery endothelial cells. Conclusions: Epigenetic regulation of the vWF promoter contributes to the creation of a local environment that favors in situ thrombosis in the pulmonary arteries. It reveals a direct molecular link between inflammatory pathways and platelet adhesion in the pulmonary vascular wall, emphasizing a possible role of in situ thrombosis in the development or progression of CTEPH.


Asunto(s)
Hipertensión Pulmonar , Factor de von Willebrand , Células Endoteliales/metabolismo , Endotelio Vascular , Epigénesis Genética , Humanos , Agregación Plaquetaria , Proteómica , Factor de von Willebrand/análisis , Factor de von Willebrand/genética , Factor de von Willebrand/metabolismo
4.
Cells ; 10(12)2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34944102

RESUMEN

Pulmonary arterial hypertension (PAH) patients eventually die of right heart failure (RHF). Currently, there is no suitable pre-clinical model to study PAH. Therefore, we aim to develop a right heart dysfunction (RHD) model using the 3-dimensional engineered heart tissue (EHT) approach and cardiomyocytes derived from patient-induced pluripotent stem cells (iPSCs) to unravel the mechanisms that determine the fate of a pressure-overloaded right ventricle. iPSCs from PAH and healthy control subjects were differentiated into cardiomyocytes (iPSC-CMs), incorporated into the EHT, and maintained for 28 days. In comparison with control iPSC-CMs, PAH-derived iPSC-CMs exhibited decreased beating frequency and increased contraction and relaxation times. iPSC-CM alignment within the EHT was observed. PAH-derived EHTs exhibited higher force, and contraction and relaxation times compared with control EHTs. Increased afterload was induced using 2× stiffer posts from day 0. Due to high variability, there were no functional differences between normal and stiffer EHTs, and no differences in the hypertrophic gene expression. In conclusion, under baseline spontaneous conditions, PAH-derived iPSC-CMs and EHTs show prolonged contraction compared with controls, as observed clinically in PAH patients. Further optimization of the hypertrophic model and profound characterization may provide a platform for disease modelling and drug screening.


Asunto(s)
Corazón/fisiopatología , Imagenología Tridimensional , Modelos Cardiovasculares , Hipertensión Arterial Pulmonar/diagnóstico por imagen , Hipertensión Arterial Pulmonar/fisiopatología , Adulto , Estudios de Casos y Controles , Diferenciación Celular , Femenino , Regulación de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/patología , Hipertensión Arterial Pulmonar/genética , Ingeniería de Tejidos
5.
Am J Respir Cell Mol Biol ; 64(3): 331-343, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33264068

RESUMEN

Monoamine oxidases (MAOs), a class of enzymes bound to the outer mitochondrial membrane, are important sources of reactive oxygen species. Increased MAO-A activity in endothelial cells and cardiomyocytes contributes to vascular dysfunction and progression of left heart failure. We hypothesized that inhibition of MAO-A can be used to treat pulmonary arterial hypertension (PAH) and right ventricular (RV) failure. MAO-A levels in lung and RV samples from patients with PAH were compared with levels in samples from donors without PAH. Experimental PAH was induced in male Sprague-Dawley rats by using Sugen 5416 and hypoxia (SuHx), and RV failure was induced in male Wistar rats by using pulmonary trunk banding (PTB). Animals were randomized to receive either saline or the MAO-A inhibitor clorgyline at 10 mg/kg. Echocardiography and RV catheterization were performed, and heart and lung tissues were collected for further analysis. We found increased MAO-A expression in the pulmonary vasculature of patients with PAH and in experimental experimental PAH induced by SuHx. Cardiac MAO-A expression and activity was increased in SuHx- and PTB-induced RV failure. Clorgyline treatment reduced RV afterload and pulmonary vascular remodeling in SuHx rats through reduced pulmonary vascular proliferation and oxidative stress. Moreover, clorgyline improved RV stiffness and relaxation and reversed RV hypertrophy in SuHx rats. In PTB rats, clorgyline had no direct clorgyline had no direct effect on the right ventricle effect. Our study reveals the role of MAO-A in the progression of PAH. Collectively, these findings indicated that MAO-A may be involved in pulmonary vascular remodeling and consecutive RV failure.


Asunto(s)
Progresión de la Enfermedad , Monoaminooxidasa/metabolismo , Hipertensión Arterial Pulmonar/enzimología , Animales , Clorgilina/farmacología , Clorgilina/uso terapéutico , Modelos Animales de Enfermedad , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/enzimología , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Humanos , Hipertrofia Ventricular Derecha/complicaciones , Hipertrofia Ventricular Derecha/fisiopatología , Indoles , Estrés Oxidativo/efectos de los fármacos , Hipertensión Arterial Pulmonar/inducido químicamente , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Hipertensión Arterial Pulmonar/fisiopatología , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/enzimología , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Pirroles , Ratas , Remodelación Vascular/efectos de los fármacos , Rigidez Vascular/efectos de los fármacos , Vasodilatación/efectos de los fármacos
6.
Angiogenesis ; 23(4): 699-714, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32813135

RESUMEN

Imbalanced transforming growth factor beta (TGFß) and bone morphogenetic protein (BMP) signaling are postulated to favor a pathological pulmonary endothelial cell (EC) phenotype in pulmonary arterial hypertension (PAH). BMP9 is shown to reinstate BMP receptor type-II (BMPR2) levels and thereby mitigate hemodynamic and vascular abnormalities in several animal models of pulmonary hypertension (PH). Yet, responses of the pulmonary endothelium of PAH patients to BMP9 are unknown. Therefore, we treated primary PAH patient-derived and healthy pulmonary ECs with BMP9 and observed that stimulation induces transient transcriptional signaling associated with the process of endothelial-to-mesenchymal transition (EndMT). However, solely PAH pulmonary ECs showed signs of a mesenchymal trans-differentiation characterized by a loss of VE-cadherin, induction of transgelin (SM22α), and reorganization of the cytoskeleton. In the PAH cells, a prolonged EndMT signaling was found accompanied by sustained elevation of pro-inflammatory, pro-hypoxic, and pro-apoptotic signaling. Herein we identified interleukin-6 (IL6)-dependent signaling to be the central mediator required for the BMP9-induced phenotypic change in PAH pulmonary ECs. Furthermore, we were able to target the BMP9-induced EndMT process by an IL6 capturing antibody that normalized autocrine IL6 levels, prevented mesenchymal transformation, and maintained a functional EC phenotype in PAH pulmonary ECs. In conclusion, our results show that the BMP9-induced aberrant EndMT in PAH pulmonary ECs is dependent on exacerbated pro-inflammatory signaling mediated through IL6.


Asunto(s)
Células Endoteliales/metabolismo , Factor 2 de Diferenciación de Crecimiento/metabolismo , Inflamación/metabolismo , Inflamación/patología , Pulmón/patología , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/patología , Transducción de Señal , Adulto , Anciano , Endotelio Vascular/patología , Femenino , Homeostasis , Humanos , Interleucina-6/metabolismo , Masculino , Microvasos/patología , Persona de Mediana Edad , Pruebas de Neutralización , Fenotipo , Hipertensión Arterial Pulmonar/genética , Transcripción Genética
7.
Int J Mol Sci ; 21(11)2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32531895

RESUMEN

Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by obstructed pulmonary vasculatures. Current therapies for PAH are limited and only alleviate symptoms. Reduced levels of BMPR2 are associated with PAH pathophysiology. Moreover, reactive oxygen species, inflammation and autophagy have been shown to be hallmarks in PAH. We previously demonstrated that MnTBAP, a synthetic metalloporphyrin with antioxidant and anti-inflammatory activity, inhibits the turn-over of BMPR2 in human umbilical vein endothelial cells. Therefore, we hypothesized that MnTBAP might be used to treat PAH. Human pulmonary artery endothelial cells (PAECs), as well as pulmonary microvascular endothelial (MVECs) and smooth muscle cells (MVSMCs) from PAH patients, were treated with MnTBAP. In vivo, either saline or MnTBAP was given to PAH rats induced by Sugen 5416 and hypoxia (SuHx). On PAECs, MnTBAP was found to increase BMPR2 protein levels by blocking autophagy. Moreover, MnTBAP increased BMPR2 levels in pulmonary MVECs and MVSMCs isolated from PAH patients. In SuHx rats, MnTBAP reduced right ventricular (RV) afterload by reversing pulmonary vascular remodeling, including both intima and media layers. Furthermore, MnTBAP improved RV function and reversed RV dilation in SuHx rats. Taken together, these data highlight the importance of MnTBAP as a potential therapeutic treatment for PAH.


Asunto(s)
Metaloporfirinas/farmacología , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Hipertensión Arterial Pulmonar/fisiopatología , Remodelación Vascular/efectos de los fármacos , Animales , Autofagia/efectos de los fármacos , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Pruebas de Función Cardíaca , Humanos , Masculino , Músculo Liso Vascular/citología , Músculo Liso Vascular/patología , Hipertensión Arterial Pulmonar/inducido químicamente , Arteria Pulmonar/citología , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/patología , Ratas Sprague-Dawley
8.
J Pathol ; 249(3): 356-367, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31257577

RESUMEN

Pulmonary arterial hypertension (PAH) is characterised by an increase in mean pulmonary arterial pressure which almost invariably leads to right heart failure and premature death. More than 70% of familial PAH and 20% of idiopathic PAH patients carry heterozygous mutations in the bone morphogenetic protein (BMP) type 2 receptor (BMPR2). However, the incomplete penetrance of BMPR2 mutations suggests that other genetic and environmental factors contribute to the disease. In the current study, we investigate the contribution of autophagy in the degradation of BMPR2 in pulmonary vascular cells. We demonstrate that endogenous BMPR2 is degraded through the lysosome in primary human pulmonary artery endothelial (PAECs) and smooth muscle cells (PASMCs): two cell types that play a key role in the pathology of the disease. By means of an elegant HaloTag system, we show that a block in lysosomal degradation leads to increased levels of BMPR2 at the plasma membrane. In addition, pharmacological or genetic manipulations of autophagy allow us to conclude that autophagy activation contributes to BMPR2 degradation. It has to be further investigated whether the role of autophagy in the degradation of BMPR2 is direct or through the modulation of the endocytic pathway. Interestingly, using an iPSC-derived endothelial cell model, our findings indicate that BMPR2 heterozygosity alone is sufficient to cause an increased autophagic flux. Besides BMPR2 heterozygosity, pro-inflammatory cytokines also contribute to an augmented autophagy in lung vascular cells. Furthermore, we demonstrate an increase in microtubule-associated protein 1 light chain 3 beta (MAP1LC3B) levels in lung sections from PAH induced in rats. Accordingly, pulmonary microvascular endothelial cells (MVECs) from end-stage idiopathic PAH patients present an elevated autophagic flux. Our findings support a model in which an increased autophagic flux in PAH patients contributes to a greater decrease in BMPR2 levels. Altogether, this study sheds light on the basic mechanisms of BMPR2 degradation and highlights a crucial role for autophagy in PAH. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Autofagia , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Células Endoteliales/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Presión Arterial , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Línea Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/patología , Femenino , Heterocigoto , Humanos , Mediadores de Inflamación/metabolismo , Lisosomas/metabolismo , Lisosomas/patología , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Persona de Mediana Edad , Músculo Liso Vascular/patología , Músculo Liso Vascular/fisiopatología , Miocitos del Músculo Liso/patología , Proteolisis , Hipertensión Arterial Pulmonar/patología , Hipertensión Arterial Pulmonar/fisiopatología , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Ratas , Transducción de Señal , Adulto Joven
9.
Cardiovasc Res ; 115(2): 432-439, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30032282

RESUMEN

Aims: Pulmonary arterial hypertension (PAH) is associated with increased levels of circulating growth factors and corresponding receptors such as platelet derived growth factor, fibroblast growth factor and vascular endothelial growth factor. Nintedanib, a tyrosine kinase inhibitor targeting primarily these receptors, is approved for the treatment of patients with idiopathic pulmonary fibrosis. Our objective was to examine the effect of nintedanib on proliferation of human pulmonary microvascular endothelial cells (MVEC) and assess its effects in rats with advanced experimental pulmonary hypertension (PH). Methods and results: Proliferation was assessed in control and PAH MVEC exposed to nintedanib. PH was induced in rats by subcutaneous injection of Sugen (SU5416) and subsequent exposure to 10% hypoxia for 4 weeks (SuHx model). Four weeks after re-exposure to normoxia, nintedanib was administered once daily for 3 weeks. Effects of the treatment were assessed with echocardiography, right heart catheterization, and histological analysis of the heart and lungs. Changes in extracellular matrix production was assessed in human cardiac fibroblasts stimulated with nintedanib. Decreased proliferation with nintedanib was observed in control MVEC, but not in PAH patient derived MVEC. Nintedanib treatment did not affect right ventricular (RV) systolic pressure or total pulmonary resistance index in SuHx rats and had no effects on pulmonary vascular remodelling. However, despite unaltered pressure overload, the right ventricle showed less dilatation and decreased fibrosis, hypertrophy, and collagen type III with nintedanib treatment. This could be explained by less fibronectin production by cardiac fibroblasts exposed to nintedanib. Conclusion: Nintedanib inhibits proliferation of pulmonary MVECs from controls, but not from PAH patients. While in rats with experimental PH nintedanib has no effects on the pulmonary vascular pathology, it has favourable effects on RV remodelling.


Asunto(s)
Indoles/farmacología , Miocardio/patología , Inhibidores de Proteínas Quinasas/farmacología , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Arteria Pulmonar/efectos de los fármacos , Remodelación Vascular/efectos de los fármacos , Función Ventricular Derecha/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Adulto , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Humanos , Masculino , Miocardio/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/patología , Hipertensión Arterial Pulmonar/fisiopatología , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Pirroles , Ratas Sprague-Dawley , Adulto Joven
10.
Pulm Circ ; 8(2): 2045894018764629, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29480152

RESUMEN

Pulmonary arterial hypertension (PAH) is a syndrome characterized by progressive lung vascular remodelling, endothelial cell (EC) dysfunction, and excessive inflammation. The primary cilium is a sensory antenna that integrates signalling and fine tunes EC responses to various stimuli. Yet, cilia function in the context of deregulated immunity in PAH remains obscure. We hypothesized that cilia function is impaired in ECs from patients with PAH due to their inflammatory status and tested whether cilia length changes in response to cytokines. Primary human pulmonary and mouse embryonic EC were exposed to pro- (TNFα, IL1ß, and IFNγ) and/or anti-inflammatory (IL-10) cytokines and cilia length was quantified. Chronic treatment with all tested inflammatory cytokines led to a significant elongation of cilia in both control human and mouse EC (by ∼1 µm, P < 0.001). This structural response was PKA/PKC dependent. Intriguingly, withdrawal of the inflammatory stimulus did not reduce cilia length. IL-10, on the other hand, blocked and reversed the pro-inflammatory cytokine-induced cilia elongation in healthy ECs, but did not influence basal length. Conversely, primary cilia of ECs from PAH patients were significantly longer under basal conditions compared to controls (1.86 ± 0.02 vs. 2.43 ± 0.08 µm, P = 0.002). These cilia did not elongate further upon pro-inflammatory stimulation and anti-inflammatory treatment did not impact cilia length. The missing length modulation was specific to cytokine stimulation, as application of fluid shear stress led to increased cilia length in the PAH endothelium. We identified loss of cilia length regulation upon cytokine stimulation as part of the endothelial dysfunction in PAH.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...